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Theorem 7.1.2

PROBLEMS 1.

short. Finally, the same result can be established on the basis of somewhat weaker but
more complicated hypotheses, so the theorem as stated is not the most general one
known, and the given conditions are sufficient, but not necessary, for the conclusion
to hold.

If each of the functions Fi, ..., F, in Egs. (11) is a linear function of the dependent
variables xi,...,x,, then the system of equations is said to be linear; otherwise, it is
nonlinear. Thus the most general system of # first order linear equations has the form

xp =pu@xi + -+ pra)x, + g1(1),
Xy = par(O)x1 + -+ - + pan(0)x, + 2(1), (14)

x:z =pm(Ox1 + -+ pu(D)x,; + 8n ().

If each of the functions gi(¢),...,g,(t) is zero for all ¢ in the interval I, then the
system (14) is said to be homogeneous; otherwise, it is nonhomogeneous. Observe
that the systems (1) and (2) are both linear. The system (1) is nonhomogeneous unless
Fy1(t) = F2(¢) = 0, while the system (2) is homogeneous. For the linear system (14),
the existence and uniqueness theorem is simpler and also has a stronger conclusion.
It is analogous to Theorems 2.4.1 and 3.2.1.

If the functions pi1, p12,...,Pm, 81,---,8n are continuous on an open interval
I: ¢ < t < B, then there exists a unique solution x; = ¢1(¢),...,x, = ¢,(t) of the
system (14) that also satisfies the initial conditions (13), where f is any point in /,
andx?,...,xare any prescribed numbers. Moreover, the solution exists throughout

the interval /.

Note that, in contrast to the situation for a nonlinear system, the existence and
uniqueness of the solution of a linear system are guaranteed throughout the interval
in which the hypotheses are satisfied. Furthermore, for a linear system the initial
values x(l), ... ,xS at ¢t = tp are completely arbitrary, whereas in the nonlinear case the
initial point must lie in the region R defined in Theorem 7.1.1.

The rest of this chapter is devoted to systems of linear first order equations (non-
linear systems are included in the discussion in Chapters 8 and 9). Our presentation
makes use of matrix notation and assumes that you have some familiarity with the
properties of matrices. The basic facts about matrices are summarized in Sections 7.2
and 7.3, and some more advanced material is reviewed as needed in later sections.

In each of Problems 1 through 4, transform the given equation into a system of first order
equations.

1. " 4+05¢0" +2u=0 @ w4+ 0.5u 4+ 2u = 3sint

3.2+t + (2 —025u=0 4. u® —u=0
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In each of Problems 5 and 6, transform the given initial value problem into an initial value
problem for two first order equations.

5.
6.
7.

1" + 0.251" + 4u = 2 cos 3t, u@ =1, ') =-2

'+ pu' + qHu = g(), u0) =up, 1'(0)=u

Systems of first order equations can sometimes be transformed into a single equation of
higher order. Consider the system

x| ==2x; + x3, Xy =x1 — 2x;5.

(a) Solve the first equation for x, and substitute into the second equation, thereby obtain-
ing a second order equation for x;. Solve this equation for x; and then determine x,
also.

(b) Find the solution of the given system that also satisfies the initial conditions x; (0) = 2,
.Yz(o) =3.

(c) Sketch the curve, for ¢ > 0, given parametrically by the expressions for x; and x,
obtained in part (b).

In each of Problems 8 through 12, proceed as in Problem 7.

(a) Transform the given system into a single equation of second order.
(b) Find x; and x, that also satisfy the given initial conditions.

(c) Sketch the graph of the solution in the x;x,-plane for r > 0.

8.

10.

12.

13.
14.

15.

Xy =3x; — 2xy, x1(0)=3 9. x; = 1.25x; + 0.75x3, x1(0) = -2
Xy =220 -2x, x0)=13 x, =075x +1.25x;, x0) =1
x) =x1 —2x,, x1(0) = -1 11. x| = 2x,, x1(0)=3

X5 = 3x; — 4xy, x(0) =2 x5 = =2xi, x(0) =4

xp=—05x +2x;, x(0)=-2
xy = =2x; — 0.5x,, 0(0) =2

Transform Egs. (2) for the parallel circuit into a single second order equation.

Show that if ayy, ay2, a1, and ay; are constants with a;; and a,; not both zero, and if the
functions g, and g, are differentiable, then the initial value problem

X = anxy +apx; + g1 (1), x1(0) = xJ

Xy = anxy +apx; + g1,  x(0) =x3

can be transformed into an initial value problem for a single second order equation. Can
the same procedure be carried out if a1y, . .., ay are functions of ¢?

Consider the linear homogeneous system

X' =pu®x+pr®)y,
Y =paO)x+ pn)y.
Show that if x = x, (), y = y1(r) and x = x,(t), y = y,(t) are two solutions of the given

system, then x = cx, (t) + c2x2 (1), y = c1y1(t) + c2y2(2) is also a solution for any constants
c; and ¢,. This is the principle of superposition.
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15.

Let

(i) o)

Show that xV(¢) and x®(¢) are linearly dependent at each point in the interval 0 < ¢ < 1.
Nevertheless, show that x(r) and x® (¢) are linearly independent on 0 < ¢ < 1.

In each of Problems 16 through 25, find all eigenvalues and eigenvectors of the given matrix.

Cl

24.
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8/9 10/9  5/9 4 2 3

Problems 26 through 30 deal with the problem of solving Ax = b when det A = 0.

26.

27

28.

29.

30.

(a) Suppose that A is a real-valued n x n matrix. Show that (Ax,y) = (x,ATy) for any
vectors x and y.

Hint: You may find it simpler to consider first the case n = 2; then extend the result to an
arbitrary value of n.

(b) If A is not necessarily real, show that (Ax,y) = (x,A"y) for any vectors x and y.

(c) If A is Hermitian, show that (Ax,y) = (x,Ay) for any vectors x and y.

Suppose that, for a given matrix A, there is a nonzero vector x such that Ax = 0. Show
that there is also a nonzero vector y such that A*y = 0.

Suppose that det A = 0 and that Ax = b has solutions. Show that (b, y) = 0, where y is any
solution of A"y = 0. Verify that this statement is true for the set of equations in Example 2.
Hint: Use the result of Problem 26(b).

Suppose that det A = 0 and that x = x© is a solution of Ax = b. Show that if £ is a solution
of A£ = 0 and « is any constant, then x = x©® + o is also a solution of Ax = b.

Suppose that det A = 0 and thaty is a solution of A*y = 0. Show that if (b,y) = 0 forevery
such y, then Ax = b has solutions. Note that this is the converse of Problem 28; the form
of the solution is given by Problem 29.

Hint: What does the relation A*y = 0 say about the rows of A? Again, it may be helpful
to consider the case n = 2 first.
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PROBLEMS

form (27), provided that there are n linearly independent eigenvectors, but in general
all the solutions are complex-valued.

In each of Problems 1 through 6:

(a) Find the general solution of the given system of equations and describe the behavior of
the solution as t — co.

(b) Draw a direction field and plot a few trajectories of the system.

D« = 3 - 9§ = 1 -2

"O"‘z—zx T )t
2 -1 , 1 1

r®x:(3 _2>x J 4.x_<4 _2>x

e o =2 1 N
3.)(:(1 —Z)X ¢ 6"‘=(§ éx
1 3

In each of Problems 7 and 8:
(a) Find the general solution of the given system of equations.

(b) Draw a direction field and a few of the trajectories. In each of these problems, the coef-
ficient matrix has a zero eigenvalue. As a result, the pattern of trajectories is different from
those in the examples in the text.

7 e 2 B e wo|[ 3 ©
.X—8_6X .X—_l _2X

In each of Problems 9 through 14, find the general solution of the given system of equations.

(1 (2 2+i
9"“(-:‘ 1)" lo"‘”(—l —1—i>x

1 1 2 3 2 4

@x’: 1 2 1]1x 12.x' =2 0 2|x
2 1 1 4 2 3
1 1 1 1 -1 4

13. X' = 2 1 -1]x 14. x' =13 2 -1]|x
-8 -5 -3 2 1 -1

In each of Problems 15 through 18, solve the given initial value problem. Describe the behavior
of the solution as t — oo.

, 5 -1 2 , -2 1 1
15. X' = (3 1) x, x(0)= <—l> 16. x' = (_5 4) x, x(0)= <3)
1 1 2 2 0 0 -1 7
17. x' = 0 2 21x, x(0)=]0 18. x' = 2 0 0lx, x(O)=1]5
-1 1 3 1 -1 2 4 5

19. The system ix’ = Ax is analogous to the second order Euler equation (Section 5.4).
Assuming that x = &, where £ is a constant vector, show that § and r must satisfy
(A — rD& = 0 in order to obtain nontrivial solutions of the given differential equation.
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Referring to Problem 19, solve the given system of equations in each of Problems 20 through
23. Assume that ¢ > 0.
-1
1]*

2 -1
20. x' = (,, )x 21, ix' = (
3 =2
22, 1x' 43 23. tx’ e
% = . = X
X g _6l¥ 3. 1x 3 3

In each of Problems 24 through 27, the eigenvalues and eigenvectors of a matrix A are given.
Consider the corresponding system x’ = Ax.

(a) Sketch a phase portrait of the system.

(b) Sketch the trajectory passing through the initial point (2,3).

(c) For the trajectory in part (b), sketch the graphs of x; versus ¢ and of x, versus t on the
same set of axes.

oo o) o el
2%.n=-1, § = <—;): n=2 = @
27.n=1, §V= <;) m=2 P (_;)

28. Consider a 2 x 2 system x’ = Ax. If we assume that r; # r,, the general solution is
x = §Wen' + o6 @en! provided that £ V) and & @ are linearly independent. In this prob-
lem we establish the linear independence of § () and & @ by assuming that they are linearly
dependent and then showing that this leads to a contradiction.

(a) Note that £ satisfies the matrix equation (A — 1)V = 0; similarly, note that
(A —nrDE@ =0.

(b) Show that (A — DD = (ry — rp)ED.

(c) Suppose that £ and £ @ are linearly dependent. Then ¢;£ D + ¢,€@ = 0 and at least
oneof ¢; and ¢; (say ¢;) is not zero. Show that (A — r2I)(c;&D + c,6 @) = 0, and also show
that (A — D) (c 1§D + @) = ¢, (r — r2)EW. Hence ¢; = 0, which is a contradiction.
Therefore, £V and & @ are linearly independent.

W W

(d) Modify the argument of part (c) if we assume that ¢, # 0.

(e) Carry out a similar argument for the case in which the order 7 is equal to 3; note that
the procedure can be extended to an arbitrary value of n.

29. Consider the equation
ay” + by +cy=0, (i)

where a, b, and c are constants with a # 0. In Chapter 3 it was shown that the general
solution depended on the roots of the characteristic equation

ar’ +br+c=0. (i)
(a) Transform Eq. (i) into a system of first order equations by letting x; = y,x, = y’. Find

the system of equations x’ = Ax satisfied by x = (;1>
2
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PROBLEMS

S

, £ - 4
L1 x =" ) x & 12.x=( 7 X
1 -3 1

In each of Problems 1 through 6:

(a) Express the general solution of the given system of equations in terms of real-valued
functions.

(b) Also draw a direction field, sketch a few of the trajectories, and describe the behavior of
the solutions as t — co.

Le=f? 2 0 (- (-1 4
X\ )X "'Ox_ 1 -1
R & , 2 -3
. = X ¢ = -
X 1 -2 7 g 1 X
1 1 ; 1 2
5.x' = (_ ﬁ)x o6 x' = ( _ )x
> =3 -5 -1

In each of Problems 7 and 8, express the general solution of the given system of equations in
terms of real-valued functions.

1 0 0 -3 0 2
7. x' =12 1 -2|x 8. x' = 1 -1 0]x
3 2 1 -2 -1 0

In each of Problems 9 and 10, find the solution of the given initial value problem. Describe the
behavior of the solution as t — oo.

, (1 - A e 2 (1
9.14:_<l _)x, x(O)_<1> 1O.x_<_1 _1>x, x(O)—<_2>

In each of Problems 11 and 12:

W W

(a) Find the eigenvalues of the given system.

(b) Choose an initial point (other than the origin) and draw the corresponding trajectory in
the x;x,-plane.

(c) For your trajectory in part (b), draw the graphs of x; versus ¢ and of x, versus .

(d) For your trajectory in part (b), draw the corresponding graph in three-dimensional
[x1Xx>-space.

vy N

In each of Problems 13 through 20, the coefficient matrix contains a parameter . In each of
these problems:

(a) Determine the eigenvalues in terms of a.

(b) Find the critical value or values of @ where the qualitative nature of the phase portrait for
the system changes.

(c) Draw a phase portrait for a value of « slightly below, and for another value slightly above,
each critical value.

1 . _
40 13, X = ( * )x 2, 14 x' = (0 5) X
-1 «a 1 o

> (s

2 =5 e
15. X'i= ( )x &'¢ 16. x' = (
a -2

[< RNV
NV
\/

»



418

Chapter 7. Systems of First Order Linear Equations

-1 o , 3 o
17. x =<_1 _1>x .18, x —<—6 _4)x
, a 10 R C
19. x' = (_1 _4) X 20. x' = (8 —6) X

In each of Problems 21 and 22, solve the given system of equations by the method of Problem
19 of Section 7.5. Assume that ¢t > 0.

o= |"t 71 59 s [2 )z
. IX = 2_1X .X-—l_2

In each of Problems 23 and 24:
(a) Find the eigenvalues of the given system.

(b) Choose an initial point (other than the origin) and draw the corresponding trajectory in
the x,x,-plane. Also draw the trajectories in the x;x3- and x,x3-planes.

(c) For the initial point in part (b), draw the corresponding trajectory in x;x,x3-space.

_1 1 0 -1 1 0

2. x=|-1 =1 0]x 24.x'=|-1 -1 0|x

0 o0 -1 0 0 g

25. Consider the electric circuit shown in Figure 7.6.6. Suppose that Ry =R, =4 Q,
C=1Fand L=8H.

(a) Show that this circuit is described by the system of differential equations

d (1 -1 -0\ /(1 _
7(0)-(2 2)6)

where [ is the current through the inductor and V is the voltage drop across the capacitor.
Hint: See Problem 20 of Section 7.1.

(b) Find the general solution of Egs. (i) in terms of real-valued functions.

(c) FindI(t)and V() if /(0) =2 A and V(0) =3 V.

(d) Determine the limiting values of /(f) and V() as t — co. Do these limiting values
depend on the initial conditions?

FIGURE 7.6.6 The circuit in Problem 25.

26. Theelectriccircuit shown in Figure 7.6.7 is described by the system of differential equations

1

0 =
d (1 L I .
5 —FE

a RC
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The columns of W(t) are the same as the solutions in Eq. (27) of Section 7.5. Thus
the diagonalization procedure does not offer any computational advantage over the
method of Section 7.5, since in either case it is necessary to calculate the eigenvalues
and eigenvectors of the coefficient matrix in the system of differential equations.

Consider again the system of differential equations
x = Ax, (45)

where A is given by Eq. (33). Using the transformation x = Ty, where T is given by Eq. (35),
you can reduce the system (45) to the diagonal system

3 0
/= =D .
y (0 _l>y y

Obtain a fundamental matrix for the system (46), and then transform it to obtain a fundamen-
tal matrix for the original system (45).
By multiplying D repeatedly with itself, we find that

9 0 27 0
D? = 3 =

Therefore, it follows from Eq. (23) that exp(Dr) is a diagonal matrix with the entries ¢ and
e~" on the diagonal; that is,

(46)

(47)

3t
D e 0
¢ ( 0 e“’) (48)
Finally, we obtain the required fundamental matrix ¥() by multiplying T and exp(Dr):
1 1\ [e* 0 e e
W(t) = = : 49
o <2 —2) < 0 e") (2@3’ —2@") (49)

Observe that this fundamental matrix is the same as the one found in Example 1.

In each of Problems 1 through 10:
(a) Find a fundamental matrix for the given system of equations.
(b) Also find the fundamental matrix ®(r) satisfying ®(0) = L.

/ 3 E
1. x _<2 _z)x

3.x = X

[SSI\S)
U
N =

> “
x\ x\
I Il
W W =N
| U
— =N W
\/ \_/
» »
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11.

12.

13.
14.

16.

17.

18.

Chapter 7. Systems of First Order Linear Equations

1 1 1 1 -1 4
X = 2 1 —-1]x 10. x’ =13 2 -1 |x
-8 -5 =3 2 1 -1

Solve the initial value problem

, (2 - (2
o e ()

by using the fundamental matrix ®(¢) found in Problem 3.
Solve the initial value problem

- -1 -4 . 3
x—<1 _]>x, x(O)—(l)

by using the fundamental matrix @ () found in Problem 6.
Show that ®(1) = W(1)¥~' (1), where ®(r) and W¥(z) are as defined in this section.

The fundamental matrix ®(¢) for the system (3) was found in Example 2. Show that
D (NP (s) = @(1 +5) by multiplying ®(¢) and ®(s).

. Let ®&(¢) denote the fundamental matrix satisfying @ = A®, ®(0) = I. In the text we also

denoted this matrix by exp(A¢). In this problem we show that & does indeed have the
principal algebraic properties associated with the exponential function.

(a) Show that ®(1)®(s) = ® (¢ + 5); that is, show that exp(Ar) exp(As) = exp[A(t + 5)].
Hint: Show that if s is fixed and ¢ is variable, then both ®(¢)®(s) and ®(r + s) satisfy the
initial value problem Z' = AZ, Z(0) = ®(s).

(b) Show that ®(1)®(—1) = I; that is, exp(Ar) exp[A(—1)] = L. Then show that

®(—1) =o' ).

(c) Show that ®(t —s) = &)@~ (s).

Show that if A is a diagonal matrix with diagonal elements a,a, ... ,a,, then exp(Ar) is
also a diagonal matrix with diagonal elements exp(a;t), exp(ayt), . . ., exp(aut).

Consider an oscillator satisfying the initial value problem

u + w’u =0, u(0) = uy, ' (0) = vy. (i)
(a) Letx; =u,x; =i/, and transform Egs. (i) into the form
x' = Ax, x(0) = x°. (i)

(b) By using the series (23), show that

in wt
expAt =Icoswt +Asmw . (iii)
w

(c) Find the solution of the initial value problem (ii).

The method of successive approximations (see Section 2.8) can also be applied to systems
of equations. For example, consider the initial value problem

x = Ax, x(0) = x", (1)

where A is a constant matrix and x° is a prescribed vector.
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PROBLEMS In each of Problems 1 through 4:

(a) Draw a direction field and sketch a few trajectories.
(b) Describe how the solutions behave as t — co.
(c) Find the general solution of the system of equations.

(98]
o8
|
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R L ST VR
|
Rl
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[N,

)

In each of Problems 5 and 6, find the general solution of the given system of equations.
1 1 1 0 1 1

5.x=1]2 1 —-1}x x’: 1 0 1]x
0 -1 1 1 i| 0

In each of Problems 7 through 10:
(a) Find the solution of the given initial value problem.

(b) Draw the trajectory of the solution in the x,x,-plane, and also draw the graph of x;
Versus .

, 1 -4\ _ (3
7. x' = (4 _7> X x(0) = (2>
3
e ()
()
2100 %' = d 0= (>
j , X'= 1 -3 X, x(0) = 4

In each of Problems 11 and 12:
(a) Find the solution of the given initial value problem.
(b) Draw the corresponding trajectory in x;x,x3-space, and also draw the graph of x; versus ¢.

[T}

_— ol =
(O%]

NIV N NIw NI

W

1 0 0 -1

11. x=| -4 1 0] x, x(0) = 2
36 2 -30

-3 11 2

c12.x=| 1 -3 1|x, xO=]| 3
1 1 - -1

In each of Problems 13 and 14, solve the given system of equations by the method of Problem
19 of Section 7.5. Assume that r > 0.

Boox=[> ~ o=t ~
.X—l_]X .X—-4—7X
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15.

16.

Show that all solutions of the system

approach zero as t — oo if and only if a +d < 0 and ad — bc > 0. Compare this result
with that of Problem 37 in Section 3.4.
Consider again the electric circuit in Problem 26 of Section 7.6. This circuit is described
by the system of differential equations

il
d1_0 T /1
a\v] | 1 1 | \v/)"®
C RC

(a) Show that the eigenvalues are real and equal if L = 4R*C.
(b) Suppose that R=1Q, C=1F, and L =4 H. Suppose also that /(0) =1 A and
V(0) =2 V. Find I(t) and V (1).

. Consider again the system

X' =Ax = (1 _;) X (i)

that we discussed in Example 2. We found there that A has a double eigenvalue ry = r, = 2
with a single independent eigenvector £V = (1,—1)7, or any nonzero multiple thereof.
Thus one solution of the system (i) is xV(¢) = £"e% and a second independent solution
has the form

x@ (1) = &te® + pe¥,

where & and 7 satisfy
A-2DE=0, (A-2Dp=§ (ii)

In the text we solved the first equation for & and then the second equation for . Here we
ask you to proceed in the reverse order.

(a) Show that 5 satisfies (A — 2I)?y = 0.

(b) Show that (A — 2I)? = 0. Thus the generalized eigenvector 3 can be chosen arbitrarily,
except that it must be independent of £V,

(c) Let p=(0,—1)7. Then determine £ from the second of Egs. (ii) and observe that
£ = (1,—1)T = ¢ This choice of 5 reproduces the solution found in Example 2.

(d) Lety = (1,0)T and determine the corresponding eigenvector £.

(e) Lety = (k,k;)7, where k; and k, are arbitrary numbers. Then determine & How is
it related to the eigenvector £1?

Eigenvalues of Multiplicity 3. If the matrix A has an eigenvalue of algebraic multiplicity 3,
then there may be either one, two, or three corresponding linearly independent eigenvectors.
The general solution of the system x” = Ax is different, depending on the number of eigenvec-
tors associated with the triple eigenvalue. As noted in the text, there is no difficulty if there
are three eigenvectors, since then there are three independent solutions of the form x = £e”.
The following two problems illustrate the solution procedure for a triple eigenvalue with one
or two eigenvectors, respectively.



